Isometries of Carnot Groups and Sub-Finsler Homogeneous Manifolds
نویسندگان
چکیده
منابع مشابه
On Stretch curvature of Finsler manifolds
In this paper, Finsler metrics with relatively non-negative (resp. non-positive), isotropic and constant stretch curvature are studied. In particular, it is showed that every compact Finsler manifold with relatively non-positive (resp. non-negative) stretch curvature is a Landsberg metric. Also, it is proved that every (α,β)-metric of non-zero constant flag curvature and non-zero relatively i...
متن کامل0 Ju n 20 14 Isometries , submetries and distance coordinates on Finsler manifolds
This paper considers fundamental issues related to Finslerian isometries, submetries, distance and geodesics. It is shown that at each point of a Finsler manifold there is a distance coordinate system. Using distance coordinates, a simple proof is given for the Finslerian version of the Myers–Steenrod theorem and for the differentiability of Finslerian submetries. AMS Subject Class. (2010): 53B40
متن کاملHomogeneous symplectic manifolds of Poisson-Lie groups
Symplectic manifolds which are homogeneous spaces of Poisson-Lie groups are studied in this paper. We show that these spaces are, under certain assumptions, covering spaces of dressing orbits of the Poisson-Lie groups which act on them. The effect of the Poisson induction procedure on such spaces is also examined, thus leading to an interesting generalization of the notion of homogeneous space....
متن کاملHomotheties of Finsler Manifolds *
We give a new and complete proof of the following theorem, discovered by Detlef Laugwitz: (forward) complete and connected finite dimensional Finsler manifolds admitting a proper homothety are Minkowski vector spaces. More precisely, we show that under these hypotheses the Finsler manifold is isometric to the tangent Minkowski vector space of the fixed point of the homothety via the exponential...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Journal of Geometric Analysis
سال: 2014
ISSN: 1050-6926,1559-002X
DOI: 10.1007/s12220-014-9552-8